Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions

نویسندگان

  • Saugata Ghose
  • Kevin Hsieh
  • Amirali Boroumand
  • Rachata Ausavarungnirun
  • Onur Mutlu
چکیده

Performance improvements from DRAM technology scaling have been lagging behind the improvements from logic technology scaling for many years. As application demand for main memory continues to grow, DRAM-based main memory is increasingly becoming a larger system bottleneck in terms of both performance and energy consumption. A major reason for poor memory performance and energy efficiency is memory’s inability to perform computation. Instead, data stored within DRAM memory must be moved into the CPU before any computation can take place. This data movement is costly, as it requires a high latency and consumes significant energy to transfer the data across the pin-limited memory channel. Moreover, the data moved to the CPU is often not reused, and thus does not benefit from being cached within the CPU, which makes it difficult to amortize the overhead of data movement. Modern 3D-stacked DRAM architectures provide an opportunity to avoid unnecessary data movement between memory and the CPU. These multi-layer architectures include a logic layer, where compute logic can be integrated underneath multiple layers of DRAM cell arrays (i.e., the memory layers) within the same chip. Architects can take advantage of the logic layer to perform processing-in-memory (PIM), or near-data processing, where some of the computation is moved from the CPU to the logic layer underneath the memory layer. In a PIM architecture, the logic layer within DRAM has access to the high internal bandwidth available within 3D-stacked DRAM (which is much greater than the bandwidth available in the narrow memory channel between DRAM and the CPU). Thus, PIM architectures can effectively free up valuable bandwidth on the bandwidth-limited memory channel while at the same time reducing system energy consumption. A number of important issues arise when we add compute logic to DRAM. In particular, logic within DRAM does not have low-latency access to common CPU structures that are essential for modern application execution, such as the virtual memory mechanisms, e.g., the translation lookaside buffer (TLB) or the page table walker, and the cache coherence mechanisms, e.g., the coherence directory. To ease the widespread adoption of PIM, we ideally would like to maintain traditional virtual memory abstractions and the shared memory programming model. This requires efficient mechanisms that can provide logic in DRAM with access to virtual memory and cache coherence without having to communicate frequently with the CPU, as off-chip communication between the CPU and DRAM consumes much of the limited bandwidth that PIM aims to avoid using. To this end, we propose and evaluate two general-purpose solutions that can be used by PIM architectures to minimize unnecessary off-chip communication. The first, IMPICA, is an efficient in-memory accelerator for pointer chasing, which can handle address translation entirely within DRAM. The second, LazyPIM, provides coherence support without the need to continually communicate with the CPU. We show that both of these mechanisms provide a significant benefit for a number of important memory-intensive applications, thereby both improving performance and reducing energy consumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patient Engagement and its Evaluation Tools – Current Challenges and Future Directions; Comment on “Metrics and Evaluation Tools for Patient Engagement in Healthcare Organization- and System-Level Decision-Making: A Systematic Review”

Considering the growing recognition of the importance of patient engagement in healthcare decisions, research and delivery systems, it is important to ensure high quality and efficient patient engagement evaluation tools. In this commentary, we will first highlight the definition and importance of patient engagement. Then we discuss the psychometric properties of the patient engagement evaluati...

متن کامل

Reverse Electrodialysis for Salinity Gradient Power Generation: Challenges and Future Perspectives

Salinity gradient energy, which is also known as Blue energy, is a renewable energy form that can be extracted from the mixing of two solutions with different salinities. About 80% of the current global electricity demand could potentially be covered by this energy source. Among several energy extraction technologie...

متن کامل

Challenges of Agroforestry Systems’ Adoption by Farmers in the North Central Zone of Nigeria

AbstractThe challenges of agroforestry systems’ adoption by farmers in the North central zone of Nigeria, was carried out to address the following objectives; find out the perception of farmers on agroforestry technologies, identify the adoption level and ascertain why farmers discontinue agroforestry adoption.. Data were collected from 722 agroforestry farmers out of 782 sets of questionnaire ...

متن کامل

Research Problems and Opportunities in Memory Systems

The memory system is a fundamental performance and energy bottleneck in almost all computing systems. Recent system design, application, and technology trends that require more capacity, bandwidth, efficiency, and predictability out of the memory system make it an even more important system bottleneck. At the same time, DRAM technology is experiencing difficult technology scaling challenges tha...

متن کامل

Main Memory Scaling: Challenges and Solution Directions

The memory system is a fundamental performance and energy bottleneck in almost all computing systems. Recent system design, application, and technology trends that require more capacity, bandwidth, efficiency, and predictability out of the memory system make it an even more important system bottleneck. At the same time, DRAM technology is experiencing difficult technology scaling challenges tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.00320  شماره 

صفحات  -

تاریخ انتشار 2018